Vol. 4 No. 2 (2021): International Journal of Aging Research
Research Articles

Epithelial tissue response to pathological effects in various age groups. Participation of morphofunctional zones and Src-kinase in this process

Tatiana Yavisheva, Sergey Shcherbakov
1,2JSC “R-Pharm”, scientific laboratory of mechanisms of stem cells regulation, Moscow, Russian Federation


  • Epithelial response; Labile groups 20-40 and 75 years and older; Pathological effects; Src-kinase

How to Cite

Tatiana Yavisheva, Sergey Shcherbakov. (2021). Epithelial tissue response to pathological effects in various age groups. Participation of morphofunctional zones and Src-kinase in this process. International Journal of Aging Research, 4(2), 81. https://doi.org/10.28933/ijoar-2021-05-2605


The response of human organism tissues to various pathological effects depends to a large extent on the presence of the total amount of key protein in the organism – Src-kinase and the ratio of its active part to inactive. With a sharp preponderance of an inactive portion of this protein over the active, the proliferative activity of cells is suppressed, and with a significant preponderance of the active part, proliferation is inadequately increased. The amount of this protein is embedded in embryogenesis and individually in each person. In the age aspect, a decrease in the Src-kinase content in the human organism is observed. The epithelial tissue of two age groups: 20-40 and 75 years and older responds most acutely to pathological effects, including the entering of viruses, since in 20-40 years the number of Src-kinase is the greatest in relation to other age groups, and in 75 years and older – the least, which causes a decrease in the reactivity of organism tissues or, conversely, hyperactivity.


  1. Yavisheva T.M., Shcherbakov S.D., Golubeva I.S., Sharafutdinov G.Z., Savluchinskaya L.A. To the question of the structural organization of the basal layer and morphofunctional features of cambial cells of the mouse epidermis. Byulleten Eksperimentalnoi Biologii I Meditsiny, 2004; 137(3): 584-588.
  2. Yavisheva T.M., Shcherbakov S.D., Dubinkin I.V. Proliferative features of cambial cells of mouse skin epidermis. Kketochnye tehnologii v biologii I meditsine, 2005; 3: 136-139.
  3. Yavisheva T.M., Shcherbakov S.D., Golubeva I.S., Savluchinskaya L.A. Comparative analysis of morphofunctional zones in normal epithelium, fibroadenoma and breast cancer. Byulleten Eksperimentalnoi Biologii I Meditsiny, 2005; 140(8): 201-205.
  4. Yavisheva T.M., Yagubov A.S. Quantitative morphology of cells of the basal layer of the multilayered mouse cornea epithelium and hu-man lung cancer Ontogenez, 1996; .27(2):.95-99.
  5. Yavisheva T.M., Shcherbakov S.D., Shara-futdinov G.Z. On epithelial cell differentiation in the system of tissue units. Doklady. Biol. Nauk, 2005; 401(6): 833-836.
  6. Astemirova L.T., Pavlova T.V., Yavisheva T.M. Quantitative method of analysis of morpho-functional state of skin epidermis. Aspirant I soiskatel, 2005; 4: 142-144.
  7. Yavisheva T.M., Shcherbakov S.D., Golubeva I.S.Savluchinskaya L.A., Rizhova N.I.The rela-tionship between the epidermal melanocytes, Langerhans cells and epidermal cambial cells. Byulleten Eksperimentalnoi Biologii I Meditsiny, 2012; 153(3): 346-349.
  8. Yavisheva T.M., Shcherbakov S.D. Morpho-functional changes of cambial cells and their derivatives in human skin in age aspect. Byulleten Eksperimentalnoi Biologii I Meditsiny, 2009; 148(9): 326-329.
  9. Yavisheva T.M., Shcherbakov S.D. Epitheli-al-stromal morphofunctional zones: structure and functions (in Russian). Moscow: RAMN, 2013; 57-62, 99-108.
  10. Fedorov S.N., Ronkina T.I., Yavisheva T.M. Human cornea endothelium. Moscow.: MNTK “Microsurgery of the eye”; 1993; 126.
  11. Yavisheva T.M., Yagubov A.S., Noginov A.A. Some patterns of the organization of the endo-thelial layer of the human cornea in norm and pathology. Arhiv Patologii, 1994: 3: 72-76.
  12. Uglova M.V. Cytological features of age-related adaptation of human heart neurons in persons of advanced and senile age. .Voprosy ser-dechno-sosudistoy patologii, 1976: 101-104.
  13. Yavisheva T.M., Shcherbakov S.D. Participation of morphofunctional zones in the process of aging. Uspekhi Gerontologii, 2012; 25(4): 604-611.
  14. Yavisheva T.M., Shcherbakov S.D., Golubeva I.S., Sharafutdinov G.Z. Interaction of cambial dermal cells (fibroblasts) and epidermis in morphofunctional zone of mouse skin. //Byulleten Eksperimentalnoi Biologii I Med-itsiny, 2007; 144(11): 594-599.
  15. Yavisheva T.M., Shcherbakov S.D. On the general mechanisms of proliferation of cambial somatic and sexual cells and the concept of cambial cells. Byulleten Eksperimentalnoi Bi-ologii I Meditsiny, 2012; 153(1): 94-97.
  16. Yavisheva T., Shcherbakov S. Participation of an inactive and active Src-kinase in formation of a cytoskeleton and melanogenesis in Hep2 cells. International journal of current microbiology and applied sciences, 2016; 5(12): 583-593.
  17. Yavisheva T.M., Shcherbakov S.D. Characteris-tic features of proliferation and differentiation of cambial and daughter cells in morphofunctional zones in normal epithelium and cancer in age aspect. Uspekhi Gerontologii, 2009; 22(4): 605-613.
  18. Aikawa, R., Komuro, I., Yamazaki, T., Zou, Y., Kudoh, S., Tanaka, M., Shiojima, I., Hiroi Y. and Yazaki, Y. Oxidative stress activates extracel-lular signal-regulated kinases through Src and Ras in cultured cardiac myocytes of neonatal rats. Journal of Clinical Investigation, 1997; 100(7):1813-1821.
  19. Burova, EB., Gonchar, IV. and Nikolsky, NN. Stat1 and stat3 activation by oxidative stress in A431 cells involves src-dependent EGF receptor tranactivation. Tsitologiya, 2003; 45(5): 466-477.
  20. Devary Y, Gottlieb R., Smeal T., Karin M. The mammalian ultraviolet response is triggered by activation of Scr tyrosine kinases. Cell,1992; 71(7): 1081-91.
  21. Yavisheva T., Shcherbakov S. Participation of Src-kinase in age changes of a brain central zone. Journal of psychiatry and psychiatric disorders,2018; 2(6): 179-182.
  22. Yavisheva T., Shcherbakov S. To a question of structial and functional organization of the morphofunctional zones in age aspect, partici-pation of Scr-kinase in the work of morpho-functional zones. International journal of current medical and pharmaceutical research, 2018; 4(6A): 3336-3344.
  23. Yavisheva T., Shcherbakov S. Participation of morphofunctional zones in aging processes. Advances in aging research, 2014; 3: 72-78.
  24. Ammendola A., Gemini D., Iannaccone S. et al. Gender and peripheral neuropathy in chronic alcoholism: a clinical-electroneurographic study. Alcohol, 2000; 35(4): 368-371.
  25. Monichev A.Y.. Hematopoietic dynamics. Moscow: Meditsina, 1984; 176.
  26. Yavisheva T.M., Shcherbakov S.D. Features of proliferation and differentiation of cambial and daughter cells of epidermal-dermal morpho-functional zone in normal epithelium and in cancer. Kketochnye tehnologii v biologii I med-itsine, 2010; 2: 88-94.
  27. Porat-Shliom N., Milberg O., Masedunskas A. and Weigert R. Multiple roles for the actin cytoskeleton during regulated exocytosis. Cell Mol Life Sci, 2013; 70(12): 2099–2121.
  28. Wang J. and Richards D. Spatial Regulation of Exocytic Site and Vesicle Mobilization by the Actin Cytoskeleton PLoS One. 2011; 6(12): e29162.
  29. Chentsov Y.S.Introduction in the cellular biology (in Russian). Moscow: «Akademkniga», 2005; 239-250.
  30. Chizmadzhev Yu.A. How the virus penetrates the cell. Priroda, 2003; 4: 69-75.
  31. Zhou, T., Tsybovsky, Y., Gorman, J., Rapp, M., Cerutti, G., Chuang, G.-Y., Katsamba, P.S., Sampson, J.M., Schön, A., Bimela, J., Boy-ington, J.C., Nazzari, A., Olia, A.S., Shi,W., Sastry, M., Stephens, T., Stuckey, J., Teng, I.-T., Wang, P., Wang, S., Zhang, B., Friesner, R.A.,Ho, D.D., Mascola, J.R., Shapiro, L., Kwong, P.D., Cryo-EM Structures of SARS-CoV-2 Spike without and with ACE2 Re-veal a pH-Dependent Switch to Mediate Endo-somal Positioning of Receptor-Binding Do-mains. Cell Host and Microbe, 2020; doi: https://doi.org/10.1016/j.chom.2020.11.004.
  32. Shiryaev V.A., Klimochkin Y. Heterocyclic vi-roporin inhibitors in the design of antiviral compounds. Himiya geterotsiklicheskih soedi-neniy, 2020; 56 (6): 626-635.
  33. Alberts B., Bray D., Lewis J., Roberts K., Wat-son J. Molecular biology of the cell. Moscow.: Mir, 1994; 118-143.
  34. Chang L., Shav-Tal Y., Trcek T. Assembling an intermediate filament network by dynamic co-translation. Journal of cell biology, 2006; 172(5): 747-758.
  35. Godsel L., Hobbs R., Green K. Intermediate filament assembly dynamics to disease. Trends in cell boil, 2008; 18: 28-37.
  36. Cortese, M., Lee, J.-Y., Cerikan, B., Neufeldt, C.J., Oorschot, V.M.J., Köhrer, S., Hennies, J., Schieber, N.L., Ronchi, P., Mizzon, G., Brey, I.R., Santarella-Mellwig, R.,Schorb, M., Boermel, M., Mocaer, K., Beckwith, M.S., Templin, R.M., Gross, V., Pape, C., Tischer, C.,Frankish, J., Horvat, N.K., Laketa, V., Stanifer, M., Boulant, S., Ruggieri, A., Chatel-Chaix, L., Schwab,Y., Bartenschlager, R., Integrative imaging reveals SARS-CoV-2 induced reshaping of subcellular morphologies. Cell Host and Microbe, 2020; doi: https://doi.org/10.1016/j.chom.2020.11.003