Vol. 4 No. 1 (2021): International Journal of Sports Medicine and Rehabilitation

Progressive exercise therapy in muscle dystrophy: two case studies in adult patients with DM2 and LGMD2D

Nico Nitzsche1*, Noah Augustin1, Michael Klotz1, Henry Schulz1
1Professorship of Sports Medicine/ Sports Biology, TU Chemnitz, Thüringer Weg 11, 09126 Chemnitz, Germany.


  • Muscle dystrophy; Resistance exercise; Exercise therapy; Muscle soreness; Creatine kinase

How to Cite

Nico Nitzsche1*, Noah Augustin1, Michael Klotz1, Henry Schulz1. (2021). Progressive exercise therapy in muscle dystrophy: two case studies in adult patients with DM2 and LGMD2D. International Journal of Sports Medicine and Rehabilitation, 4(1), 17. https://doi.org/10.28933/ijsmr-2020-11-2605


These two case studies aimed to investigate the effect and acceptance of progressive strength training in patients with muscular dystrophy. Case 1 completed a progressive resistance exercise over 12 weeks. The results showed increases in leg extensor strength, hand strength and balance. Furthermore, the anaerobic test showed an increase in the maximum glycolysis rate. Creatine kinase levels were reduced while maintaining low muscle soreness. Case 2 conducted seven weeks of electronically assisted strength training and electromyostimulation. In the course of the training, an increase in the self-contribution of the performance in the execution of movement was observed in the assisted strength training. Furthermore, an increase in the intensity of external stimuli was observed. The creatine kinase showed a reduction with physiological behavior of muscle soreness. The results demonstrate the acceptance and feasibility of progressive exercise protocols used to increase performance in two cases of muscular dystrophy.


  1. Aldehag, A. S., Jonsson, H., & Ansved, T. [Tor] (2005). Effects of a hand training programme in five patients with myotonic dystrophy type 1. Occupational Therapy International, 12(1), 14–27. https://doi.org/10.1002/oti.12
  2. Ansved, T. [T.] (2001). Muscle training in muscular dystrophies. Acta Physiologica Scandinavica, 171(3), 359–366. https://doi.org/10.1046/j.1365-201x.2001.00839.x
  3. Berthelsen, M. P., Husu, E. [E.], Christensen, S. B., Prahm, K. P. [K. P.], Vissing, J. [J.], & Jensen, B. R. (2014). Anti-gravity training improves walking capacity and postural balance in patients with muscular dystrophy. Neuromuscular Disorders : NMD, 24(6), 492–498. https://doi.org/10.1016/j.nmd.2014.03.001
  4. Böning, D. (2002). Muskelkater. Retrieved from https://www.aerzteblatt.de/pdf.asp?id=30395
  5. Chisari, C., Bertolucci, F., Dalise, S., & Rossi, B. (2013). Chronic muscle stimulation improves muscle function and reverts the abnormal surface EMG pattern in myotonic dystrophy: A pilot study. Journal of NeuroEngineering and Rehabilitation, 10(1), 94. https://doi.org/10.1186/1743-0003-10-94
  6. Colson, S. S., Benchortane, M., Tanant, V., Faghan, J.?P., Fournier-Mehouas, M., Benaïm, C., . . . Sacconi, S. (2010). Neuromuscular electrical stimulation training: A safe and effective treatment for facioscapulohumeral muscular dystrophy patients. Archives of Physical Medicine and Rehabilitation, 91(5), 697–702. https://doi.org/10.1016/j.apmr.2010.01.019
  7. Cudia, P., Weis, L., Baba, A., Kiper, P., Marcante, A., Rossi, S., . . . Piccione, F. (2016). Effects of Functional Electrical Stimulation Lower Extremity Training in Myotonic Dystrophy Type I: A Pilot Controlled Study. American Journal of Physical Medicine & Rehabilitation, 95(11), 809–817. https://doi.org/10.1097/PHM.0000000000000497
  8. Day, J. W., Ricker, K., Jacobsen, J. F., Rasmussen, L. J., Dick, K. A., Kress, W., . . . Ranum, L. P. W. (2003). Myotonic dystrophy type 2: Molecular, diagnostic and clinical spectrum. Neurology, 60(4), 657–664. https://doi.org/10.1212/01.wnl.0000054481.84978.f9
  9. Di Mauro, S., Angelini, C. [C.], & Catani, C. (1967). Enzymes of the glycogen cycle and glycolysis in various human neuromuscular disorders. Journal of Neurology, Neurosurgery, and Psychiatry, 30(5), 411–415. https://doi.org/10.1136/jnnp.30.5.411
  10. Finsterer, J. (2004). Klinik und Genetik der Gliedergürteldystrophien [Limb girdle muscular dystrophies]. Der Nervenarzt, 75(12), 1153–1166. https://doi.org/10.1007/s00115-004-1769-5
  11. Fontes-Oliveira, C. C., Steinz, M., Schneiderat, P., Mulder, H., & Durbeej, M. (2017). Bioenergetic Impairment in Congenital Muscular Dystrophy Type 1A and Leigh Syndrome Muscle Cells. Scientific Reports, 7(1), 45272. https://doi.org/10.1038/srep45272
  12. Gagnon, C. [Cynthia], Petitclerc, É., Kierkegaard, M. [Marie], Mathieu, J., Duchesne, É., & Hébert, L. J. (2018). A 9-year follow-up study of quantitative muscle strength changes in myotonic dystrophy type 1. Journal of Neurology, 265(7), 1698–1705. https://doi.org/10.1007/s00415-018-8898-4
  13. Gutenbrunner, C. (2000). Circadian variations of the serum creatine kinase level–a masking effect? Chronobiology International, 17(4), 583–590. https://doi.org/10.1081/CBI-100101065
  14. Hammarén, E., Lindberg, C., & Kjellby-Wendt, G. (2015). Effects of a balance exercise programme in myotonic dystrophy type 1: A pilot study. European Journal of Physiotherapy, 17(3), 123–131. https://doi.org/10.3109/21679169.2015.1049204
  15. Haun, C. T., Vann, C. G., Osburn, S. C., Mumford, P. W., Roberson, P. A., Romero, M. A., . . . Roberts, M. D. (2019). Muscle fiber hypertrophy in response to 6 weeks of high-volume resistance training in trained young men is largely attributed to sarcoplasmic hypertrophy. PloS One, 14(6), e0215267. https://doi.org/10.1371/journal.pone.0215267
  16. Kenner, J. E. (2011). Inzidenzschätzung der Gliedergürtelmuskeldystrophien für Deutschland. Universität Würzburg. Retrieved from https://opus.bibliothek.uni-wuerzburg.de/frontdoor/index/index/docId/6390
  17. Kierkegaard, M. [M.], Harms-Ringdahl, K., Edström, L., Widén Holmqvist, L., & Tollbäck, A. (2011). Feasibility and effects of a physical exercise programme in adults with myotonic dystrophy type 1: A randomized controlled pilot study. Journal of Rehabilitation Medicine, 43(8), 695–702. https://doi.org/10.2340/16501977-0833
  18. Komi, P. V. (2003). Strength and Power in Sport. Oxford, UK: Blackwell Science Ltd. https://doi.org/10.1002/9780470757215
  19. Lindeman, E., Leffers, P., Spaans, F., Drukker, J., Reulen, J., Kerckhoffs, M., & Koke, A. (1995). Strength training in patients with myotonic dystrophy and hereditary motor and sensory neuropathy: A randomized clinical trial. Archives of Physical Medicine and Rehabilitation, 76(7), 612–620. https://doi.org/10.1016/s0003-9993(95)80629-6
  20. Lindeman, E., Spaans, F., Reulen, J., Leffers, P., & Drukker, J. (1999). Progressive resistance training in neuromuscular patients. Effects on force and surface EMG. Journal of Electromyography and Kinesiology, 9(6), 379–384. https://doi.org/10.1016/S1050-6411(99)00003-6
  21. Liu, W., Pajusalu, S., Lake, N. J., Zhou, G., Ioannidis, N., Mittal, P., . . . Lek, M. (2019). Estimating prevalence for limb-girdle muscular dystrophy based on public sequencing databases. (1-9): Genetics in Medicine. https://doi.org/10.1101/502708
  22. Lodi, R., Kemp, G. J., Muntoni, F., Thompson, C. H., Rae, C., Taylor, J., . . . Taylor, D. J. (1999). Reduced cytosolic acidification during exercise suggests defective glycolytic activity in skeletal muscle of patients with Becker muscular dystrophy. An in vivo 31P magnetic resonance spectroscopy study. Brain, 122 (Pt 1)(1), 121–130. https://doi.org/10.1093/brain/122.1.121
  23. Mader, A. (1994). Die Komponenten der Stoffwechselleistung in den leichtathletischen Ausdauerdisziplinen-Bedeutung für die Wettkampfleistung und Möglichkeiten zu ihrer Bestimmung.: Neue Tendenzen im Ausdauertraining, 12.
  24. Mah, J. K., Korngut, L., Fiest, K. M., Dykeman, J., Day, L. J., Pringsheim, T., & Jette, N. (2016). A Systematic Review and Meta-analysis on the Epidemiology of the Muscular Dystrophies. The Canadian Journal of Neurological Sciences. Le Journal Canadien Des Sciences Neurologiques, 43(1), 163–177. https://doi.org/10.1017/cjn.2015.311
  25. Meola, G. [Giovanni] (2013). Clinical aspects, molecular pathomechanisms and management of myotonic dystrophies. Acta Myologica : Myopathies and Cardiomyopathies : Official Journal of the Mediterranean Society of Myology, 32(3), 154–165. Retrieved from https://pubmed.ncbi.nlm.nih.gov/24803843/
  26. Missaoui, B., Rakotovao, E., Bendaya, S., Mane, M., Pichon, B., Faucher, M., & Thoumie, P. (2010). Posture and gait abilities in patients with myotonic dystrophy (Steinert disease). Evaluation on the short-term of a rehabilitation program. Annals of Physical and Rehabilitation Medicine, 53(6-7), 387–398. https://doi.org/10.1016/j.rehab.2010.06.004
  27. Neumayr, A. (2008). Häufigkeit der proximalen myotonen Myopathie (PROMM/DM2) im Vergleich zur Myotonen Dystrophie (DM1) in der deutschen Bevölkerung. Retrieved from https://www.researchgate.net/publication/27486552_Haufigkeit_der_proximalen_myotonen_Myopathie_PROMMDM2_im_Vergleich_zur_Myotonen_Dystrophie_DM1_in_der_deutschen_Bevolkerung
  28. Nitzsche, N., Lenz, J. C., Voronoi, P., & Schulz, H. (2020). Adaption of Maximal Glycolysis Rate after Resistance Exercise with Different Volume Load. Sports Medicine International Open, 4(2), E39-E44. https://doi.org/10.1055/a-1146-4236
  29. Northoff, H. (2013). Exercise Immunolgy Review: An official Publication of ISEI and DGSP. (19).
  30. Orngreen, M. C., Olsen, D. B., & Vissing, J. [John] (2005). Aerobic training in patients with myotonic dystrophy type 1. Annals of Neurology, 57(5), 754–757. https://doi.org/10.1002/ana.20460
  31. Roussel, M.?P., Morin, M., Gagnon, C. [C.], & Duchesne, E. (2019). What is known about the effects of exercise or training to reduce skeletal muscle impairments of patients with myotonic dystrophy type 1? A scoping review. BMC Musculoskeletal Disorders, 20(1), 101. https://doi.org/10.1186/s12891-019-2458-7
  32. Schoser, B. [Benedikt], & Timchenko, L. (2010). Myotonic dystrophies 1 and 2: Complex diseases with complex mechanisms. Current Genomics, 11(2), 77–90. https://doi.org/10.2174/138920210790886844
  33. Scott, B. R., Duthie, G. M., Thornton, H. R., & Dascombe, B. J. (2016). Training Monitoring for Resistance Exercise: Theory and Applications. Sports Medicine, 46(5), 687–698. https://doi.org/10.1007/s40279-015-0454-0
  34. Siciliano, G., Mancuso, M., Tedeschi, D., Manca, M., Renna, M., Lombardi, V., . . . Murri, L. (2001). Coenzyme Q10, exercise lactate and CTG trinucleotide expansion in myotonic dystrophy. Brain Research Bulletin, 56(3-4), 405–410. https://doi.org/10.1016/S0361-9230(01)00653-0
  35. Siciliano, G., Simoncini, C., Giannotti, S., Zampa, V., Angelini, C. [C.], & Ricci, G. (2015). Muscle exercise in limb girdle muscular dystrophies: Pitfall and advantages. Acta Myologica, 34(1), 3–8.
  36. Smith, K., & Pucillo, E. (2018). The High-Level Mobility Assessment Tool (HiMAT) in Myotonic Dystrophy Type 2: A Case Report. SOAR@USA Physical Therapy Collection. Retrieved from https://soar.usa.edu/pt/24
  37. Suominen, T., Bachinski, L. L., Auvinen, S., Hackman, P., Baggerly, K. A., Angelini, C. [Corrado], . . . Udd, B. [Bjarne] (2011). Population frequency of myotonic dystrophy: Higher than expected frequency of myotonic dystrophy type 2 (DM2) mutation in Finland. European Journal of Human Genetics : EJHG. (7), 776–782. https://doi.org/10.1038/ejhg.2011.23
  38. Sveen, M. L., Jeppesen, T. D., Hauerslev, S., Køber, L., Krag, T. O. [T. O.], & Vissing J. (2008). Endurance training improves fitness and strength in patients with Becker muscular dystrophy. Brain : A Journal of Neurology, 131(Pt 11), 2824–2831. https://doi.org/10.1093/brain/awn189
  39. Sveen, M.?L., Andersen, S. P., Ingelsrud, L. H., Blichter, S., Olsen, N. E., Jønck, S., . . . Vissing, J. [John] (2013). Resistance training in patients with limb-girdle and becker muscular dystrophies. Muscle & Nerve, 47(2), 163–169. https://doi.org/10.1002/mus.23491
  40. Tollbäck, A., Eriksson, S., Wredenberg, A., Jenner, G., Vargas, R., Borg, K., & Ansved, T. [T.] (1999). Effects of high resistance training in patients with myotonic dystrophy. Scandinavian Journal of Rehabilitation Medicine, 31(1), 9–16.
  41. Tramonti, C., Dalise, S., Bertolucci, F., Rossi, B., & Chisari, C. (2014). Abnormal Lactate Levels Affect Motor Performance in Myotonic Dystrophy Type 1. European Journal of Translational Myology, 24(4), 4726. https://doi.org/10.4081/ejtm.2014.4726
  42. Udd, B. [B.], Meola, G. [G.], Krahe, R. [R.], Wansink, D. G., Bassez, G., Kress, W., . . . Moxley, R. (2011). Myotonic dystrophy type 2 (DM2) and related disorders report of the 180th ENMC workshop including guidelines on diagnostics and management 3-5 December 2010, Naarden, The Netherlands. Neuromuscular Disorders, 21(6), 443–450. https://doi.org/10.1016/j.nmd.2011.03.013
  43. Udd, B. [Bjarne], & Krahe, R. [Ralf] (2012). The myotonic dystrophies: Molecular, clinical, and therapeutic challenges. The Lancet Neurology, 11(10), 891–905. https://doi.org/10.1016/S1474-4422(12)70204-1
  44. Vissing, C. R., Preisler, N., Husu, E. [Edith], Prahm, K. P. [Kira P.], & Vissing, J. [John] (2014). Aerobic training in patients with anoctamin 5 myopathy and hyperckemia. Muscle & Nerve, 50(1), 119–123. https://doi.org/10.1002/mus.24112